Diketahui limas beraturan panjang rusuk AB = 3 cm dan TA = 6 cm. Tentukan jarak titik B ke rusuk PenyelesaianGambar limas dari soal diatas sebagai cmTD = TA = 6 cmDitanyakan jarak titik B ke rusuk titik B di rusuk TD adalah titik P sehingga garis BP tegak lurus dengan garis TD, maka jarak titik B ke rusuk TD adalah panjang garis segitiga TOD, diperoleh Perhatikan segitiga TBD, dengan menggunakan kesamaan luas segitiga diperolehJadi jarak titik B ke rusuk TD adalah limas segi enam beraturan. dengan panjang rusuk AB = 10 cm dan AT = 13 cm. Tentukan jarak titk B ke rusuk PenyelesaianGambar limas dari soal diatas sebagai gambar soal dan gambar diketahui proyeksi titik B di garis TE adalah titik P, sehingga garis BP tegak lurus garis TE sehingga jarak titik B ke rusuk TD adalah panjang garis BPBE = 2 . AB = 2 . 10 = 20 cmET = AT = 13 cmEO = ½ BE = ½ 20 = 10 cmSehinggaPerhatikan segitiga TEB dan dengan menggunakan kesamaan luas segitiga diperoleh Jadi jarak titik B ke rusuk TD adalah cmDiketahui Kubus dengan panjang AB = 10 cm. Tentukan a. Jarak titik F ke garis AC b. Jarak titik H ke garis DFAlternatif PenyelesaianGambar kubus dari soal diatas sebagai Jarak titik F ke garis ACProyeksi titik F ke garis AC adalah titik O sehingga garis FO tegak lurus garis AC, maka jarak titik F ke garis AC adalah panjang garis garis BO yang berpotongan dengan garis AC di titik O, sehingga membentuk segitiga siku-siku FBO, siku-siku di titik segitiga siku-siku FBOBF = 10Sehingga diperoleh panjang FO adalahJadi jarak titik F ke garis AC adalah cmb. Jarak titik H ke garis DFProyeksi titik H ke garis DF adalah titik P sehingga garis HP tegak lurus garis DF, maka jarak titik H ke garis DF adalah panjang garis segitiga DHFDH = 6 dan Dengan menggunakan kesamaan luas segitiga diperolehJadi jarak titik H ke garis DF adalah cm Diketahui kubus dengan rusuk 8 cm. Titik M adalah titik tengah BC. Tentukan jarak M ke garis PenyelesaianGambar kubus dari soal diatas sebagai berikutProyeksi titik M ke garis EG adalah titik P sehingga MP tegak lurus EG, maka jarak titik M ke garis EG adalah panjang garis pada pembahasan soal 3 pada soal dan pembahasan jarak titik ke titik pada bangun ruang bahwa segitiga BOC sebangun dengan segita MNC sehingga diperolehPerhatikan segitiga PNMJadi jarak titik M ke garis EG adalah cmPerhatikan limas segi empat beraturan P dan Q berturut-turut adalah titik tengah rusuk AB dan AD. Jika panjang AB = TA = 12 cm. Tentukan jarak antara titik T dan garis PenyelesaianProyeksi titik T ke garis PQ adalah titik S, sehingga garis TS tegaklurus dengan garis PQ, maka jarak titik T ke garis PQ adalah panjang garis pada pembahasan soal 3 pada soal dan pembahasan jarak titik ke titik pada bangun ruang, maka diperolehUntuk menghitung tinggi limas perhatikan segitiga AOTPerhatikan segitiga TOSJadi jarak titik T ke garis PQ adalah cmUntuk mempelajari pembahasan soal jarak titik ke bidang silahkan klik DISINIUntuk menghitung jarak titik ke garis menggunakan aplikasi geogebra dapat dipelajari pada pembahasan Cara Menghitung Jarak Titik ke Garis Mengggunakan Aplikasi pembahasan soal jarak titik ke garis, semoga bermanfaat. Amin ya robbal alamin.Jawabanpaling sesuai dengan pertanyaan 31. Pada kubus ABCD.EFGH dengan panjang rusuk 6" "cm, maka jarak titik H ke garis DF adala Kelas 12 SMADimensi TigaJarak Titik ke GarisDiketahui kubus dengan panjang AB=10. Tentukan a. Jarak titik F ke garis AC b. Jarak titik H ke garis DFJarak Titik ke GarisDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0156Diketahui kubus dengan panjang rusuk 6 cm. Jara...0148Diketahui kubus ABCD. EFGH dengan panjang rusuk 8 cm. Jar...0157Diketahui kubus dengan panjang rusuk 10 cm. Tit...0140Diketahui kubus ABCD EFGH dengan panjang rusuk 6 cm. Jara...Teks videoHalo Google pada soal ini kita diberikan kubus abcd efgh dengan panjang AB adalah 10 kita akan menentukan jarak titik f ke garis AC Jarak titik h ke garis DF bisa kita ilustrasikan kubus abcdefgh nya terlebih dahulu di sini Abinya sepanjang 10 m karena abcdefgh ini merupakan kubus maka setiap rusuk ini panjangnya sama seperti panjang AB kita melihat dari yang untuk Jarak titik f ke garis AC kita Gambarkan terlebih dahulu untuk garis AC nya yang mana Jarak titik f ke garis AC berarti kita tarik Garis dari titik f ke AC nya yang mana garis tersebut tegak lurus terhadap AC kalau kita misalkan disini adalah p maka FB menunjukkan jarak titikKe garis AC Nah kalau kita perhatikan untuk segitiga ABD ini merupakan segitiga sama sisi sebab baik a c c f f a ini merupakan diagonal bidang pada kubus nya oleh karena di sini FT tegak lurus terhadap AC maka FP ini merupakan garis tinggi pada segitiga ABC garis tinggi pada suatu segitiga sama sisi ini berarti juga merupakan garis berat garis berat ini adalah garis yang ditarik dari suatu titik sudut segitiga ke Sisi yang ada di hadapannya sehingga membagi Sisi yang ada dihadapannya menjadi dua sama panjang. Berarti di sini untuk membagi ac-nya menjadi 2 sama panjang untuk menentukan panjang fb-nya disini kita perlu menentukan panjang AC sertakarena Aceh dan CF merupakan diagonal bidang pada suatu kubus kita perlu ingat rumus dalam menentukan diagonal bidang pada kubus untuk panjang diagonal bidang untuk suatu kubus sama dengan panjang rusuknya dikali akar 2 berarti karena AC dan CF adalah diagonal bidang kita akan Aceh panjangnya = CF yaitu 10 akar 2 akar 6 BC ini setengahnya dari AC maka bisa kita peroleh PC = setengah dikali 10 akar 2 yaitu = 5 akar 2 untuk menentukan panjang ST bisa kita perhatikan bahwa di sini fpc adalah segitiga siku-siku sehingga kita bisa gunakan teorema Pythagoras dihadapan sudut siku-sikunya yaitu di sudut P kita punya Sisi CF ini adalah sisi miring dari segitigaBerarti untuk kita ingat teorema Pythagoras menyatakan bahwa kuadrat sisi miring sama dengan jumlah kuadrat Sisi Sisi Lainnya bisa kita Tuliskan CF kuadrat = P kuadrat q + r t kuadrat c f nya adalah 10 √ 2 Jadi kita kuadratkan ini sama dengan PC nya adalah 5 √ 2. Jadi kita kuadratkan ditambah b kuadrat untuk fb-nya yang akan kita cari kita perlu ingat bahwa kalau kita punya akar m dikali akar m Maka hasilnya = M maka suku akar 2 dikali 10 akar 2 kita akan peroleh 10 * 10 adalah 100 * √ 2 * √ 2 adalah 2 maka kita peroleh juga di sini 25 * 2 Nah kita selesaikan maka kita akan peroleh 200 = 50 + 4 P kuadratkita pindahkan 50 nya dari ruas kanan ke ruas kiri maka kita akan peroleh 150 = f t kuadrat jika kita Tuliskan FT kuadrat = 50 kuadrat di ruas kiri bisa kita pindahkan menjadi akar di ruas kanan namanya sebenarnya kita akan punya plus minus akar 150 namun f p menunjukkan panjang dari suatu sisi segitiga maka tidak mungkin kita Nyatakan dalam bilangan negatif jadi kita ambil yang positifnya saja sehingga f t = akar 150 untuk akar 150 bisa kita Sederhanakan dengan kita ubah 156 menjadi Perkalian antara 2 buah bilangan yang mana salah satu bilangan yang merupakan bilangan kuadrat 150 bisa kita tulis menjadi 25 * 6 yang benar 25 adalah 5 kuadrat X dikalisehingga fb-nya = akar dari 5 kuadrat dikali akar 6 berdasarkan sifat pada bentuk akar bentuk akar 5 kuadrat kita gunakan juga sifat pada bentuk akar maka kita peroleh F = 5 akar 6 satuan panjang jadi karena FP menunjukkan jarak dari titik f ke garis AC maka jarak titik f ke garis AC nya adalah 5 akar 6 satuan panjang selanjutnya untuk yang B B Gambarkan garis DF sehingga jarak titik h ke garis DF kita tarik Garis dari titik h ke DF nya yang tegak lurus kita misalkan ini adalah titik a maka merupakan Jarak titik h ke garis DF Nah kalau misalkan kita tarik garis seperti ini kita akan peroleh bdhf ini merupakan suatu prosesPanjang berarti di sini di sini di sini dan di sini sudut-sudutnya adalah 90 derajat sehingga ini merupakan segitiga siku-siku berarti untuk menentukan panjang ao kita bisa gunakan kesamaan luas segitiga kita membutuhkan panjang AF serta kita membutuhkan panjang Dr oleh karena a f merupakan diagonal bidang maka F = 10 akar 2. Nah DF nya ini merupakan diagonal ruang maka kita bisa peroleh berdasarkan rumus pada diagonal ruang untuk suatu kubus panjangnya kita peroleh untuk diagonal ruang berdasarkan rusuk √ 3 berarti DF nya ini = 10 akar 3 selanjutnya kita gunakan rumus luas segitiga yang mana luasnya diperoleh dariQ * alas * tinggi Nah kita punya dua sudut pandang dalam menentukan alas serta tinggi dari segitiga pada segitiga DHL yang mana karena ini sama-sama segitiga DHF berarti kita akan peroleh sebenarnya hasilnya sama hanya saja rumusnya disini kita akan peroleh berbeda berdasarkan sudut pandang yang pertama kalau kita pandang hf ini merupakan alasnya maka tingginya adalah DH selain itu juga bisa kita pandang DF adalah alasnya maka tingginya adalah h. O tentunya Allah serta tinggi segitiga ini saling tegak lurus untuk kedua ruas bisa sama-sama kita kalikan dengan 2 final kita substitusikan saja HF nya kemudian DS nya dan D hanya disini adalah rusuk dari kubus Nya sehingga bisa kita Tuliskan di ruas kiri kitaakar 2 dikali 10 dan di ruas kanan 10 akar 3 dikali H untuk kedua ruas bisa sama-sama kita / 10 √ 3 maka disini untuk yang 10 nya bisa sama-sama kita coret kita akan peroleh 10 akar 2 per akar 3 = H atau kita Tuliskan seperti ini dan ini adalah bentuk pecahan yang penyebutnya terdapat bentuk akar maka bisa kita rasionalkan dengan cara kita memanfaatkan bentuk Sekawan dari bentuk akar pada penyebut bentuk Sekawan dari misalkan akar m adalah akar m itu sendiri maka bentuk Sekawan dari √ 3 adalah √ 3 yang mana kita kalikan pembilang serta sama-sama dengan bentuk Sekawan dari bentuk akar pada penyebutnya atau bisa kita Tuliskan ini dikali dengan akar 3 per akar 3berdasarkan sifat pada bentuk akar maka kita akan memperoleh haknya ini sama dengan 10 kali akar 2 dikali 3 per akar 3 dikali akar 3 adalah 3 = 10 per 3 akar 6 satuan panjang jadi dapat kita simpulkan Jarak titik h ke garis DF adalah 10 per 3 akar 6 satuan panjangSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
hjarak titik H ke garis 1)1 4 Diketahui kubus ABCD.EFGH dengan rusuk 8c11 Titik A1 adalah titik 1 1 17c Tentukan jarak A1 ke EG uran berikut
PembahasanJarak titik Hke garis ACdapat digambarkan sebagai berikut. AH dan ACmerupakan diagonal sisi kubus yang panjangnya dapat ditentukan dengan Teorema Pythagoras sebagai berikut. Panjang AO adalah Jarak titik Hke garis AC diwakili oleh garis OH. Dengan menerapkan Teorema Pythagoras, diperoleh perhitungan sebagai berikut. Dengan demikan, jarak titik Hke garis AC adalah . Jadi, jawaban yang tepat adalah titik H ke garis AC dapat digambarkan sebagai berikut. AH dan AC merupakan diagonal sisi kubus yang panjangnya dapat ditentukan dengan Teorema Pythagoras sebagai berikut. Panjang AO adalah Jarak titik H ke garis AC diwakili oleh garis OH. Dengan menerapkan Teorema Pythagoras, diperoleh perhitungan sebagai berikut. Dengan demikan, jarak titik H ke garis AC adalah . Jadi, jawaban yang tepat adalah E.